Biomaterials and Bio-inspired Engineering

This research area focuses on characterising, understanding, and modelling the microscopic and mesoscopic properties of biological structures and assemblies to create new bio-inspired materials with complex functions and applications in Biomedicine and BioEngineering.

The following selected research topics list some examples of current activities that are pursued by the MSB principal investigators.

Cellular Biophysics

PI Andreas Bausch

All living organisms, ranging from the simplest bacteria to the most complex vertebrates, continuously consume nutrients from the environment. These externally acquired resources power diverse microscopic processes that are essential for the survival and reproduction of cells and organisms. Thus in a cellular environment energy is injected at the molecular scales through motion of the elemental energy consuming nanomachines. Elucidating the basic physical laws that govern the collective behavior of such bustling cellular environments is essential not only for deciphering the physical basis of life but also for engineering complex machines that are capable of reproducing or interfering with functionalities found in living organisms, which is needed for identifying cures for malfunctioning found in many diseases.  This research project aims particularly to reconstitute fundamental functional modules of cells connected to the cytoskeletal machinery. 

For more information click here

Biopolymers and Biointerfaces

PI Oliver Lieleg

Biopolymers are located inside and outside of eukaryotic cells where they form hydrogels in aqueous environments. Examples include mucus, the extracellular matrix and bacterial biofilms, respectively. Such hydrogels have a dual function: First, they are responsible for the viscoelastic properties of cells and tissues and protect them from mechanical damage. Second, they regulate the passive transport of particles and molecules.

Our research has the following goals:
1. To discover new, to date unknown properties of biopolymers.
2. To identify the microscopic principles that govern the material properties (e.g., mechanics, permeability, and lubricity) of biological hydrogels.
3.     To apply those principles to synthetic polymers, create biomimetic materials and find technical/medical applications for purified biopolymers

For more information click here

HPC Modeling of Bio-Materials

PI Wolfgang A. Wall

The knowledge about the basic biophysical properties of materials and interaction on the microscopic and mesoscopic scale can be used to computationally model healthy properties and certain diseases in tissues organs. One such example is mechanical ventilation for patients suffering from lung diseases. Here, computer simulations can predict so-called ventilation-induced lung injuries, by modeling the airflow from the windpipe to the smallest airways and the resulting local straining of the tissue. Information obtained from these very complex simulations can help physicians predict the effect of different interventions and develop improved patient-specific treatments in the future.

For more information click here

Cognitive Systems

PI Gordon Cheng

The Chair of Cognitive Systems deals with the fundamental understanding and creation of cognitive systems. 

Our main research topics are: 

Active Tactile Learning
Affective Brain-Robot-Interface
Artificial Robotic Skin
Cognitive Architectures
Humanoid Robotic Systems and Locomotion
Physical-Human Robot Interaction
Multi-modal Sensor Fusion
Enhanced Reasoning Methods
Self-aware Robots
Social Robotics

For more information click here