Biomedical Technologies and Computing

An der MSB werden unterschiedlichste Technologien erforscht, die eine bessere Diagnose und Behandlung von Krankheiten und den Ausgleich von Behinderungen ermöglichen sollen. Dazu gehören Geräte für die Point-of-Care-Diagnostik ("Diagnostik am Patientenbett"), Computeralgorithmen, die medizinische Bilder auswerten oder Chirurginnen und Chirurgen bei der Arbeit unterstützen, sowie Cochlea-Implantate, die eigentlich gehörlosen Menschen das Hören ermöglichen.

Auf dieser Seite finden Sie ausgewählte Forschungsprojekte von MSB-PIs aus folgenden Bereichen: Biosensoren, Bioelektronik | Cochlea Implantate, Neuronale Modellierung | Biomedizinisches Computing 


Die deutschsprachige Version dieser Seite befindet sich noch im Aufbau


Biosensoren, Bioelektronik

Neuroelectronics

PI Bernhard Wolfrum

This group focuses on printing technologies for life science and point-of-care applications. In particular, it is interested in bioelectronic interfaces and sensor arrays for the stimulation and recording of chemical and electrical signals in cellular networks. The goal is to develop microfluidic biohybrid devices to investigate network-scale phenomena including cellular signal propagation, lesion response, and progressive neurodegeneration.  

More Information:
Webpage of the Neuroelectronics Group
Press release: Producing sensors with an inkjet printer

Measurements of Cell Function

PI Oliver Hayden

Cells are the smallest integral unit of life. However, integrated testing of cell function and cell-cell interaction on various time scales is an unmet clinical need. In a highly interdisplinary research field at the Chair of Biomedical Electronics we focus on workflow integration and biosensing methods for precision measurements of cell function. (a) A magnetoresistive sensor, adopted from hard disk read heads, is tuned for single cell analysis with respect to cell size, magnetic loading of cells, and cell morphology. (b) To minimize Si area for bedside Point-of-Care Testing we have designed a functionalized semiconductor package housing a 2×2 mm² sensor in an injection moulded microfluidic device. (c) The system balances magnetophoretic and hydrodynamic forces for precise and highly reproducible probing of single cells and thus could provide cell function testing in an integrated workflow at the bedside for fast clinical outcome.

More Information:
Website of the Heinz Nixdorf Chair of Biomedical Electronics.
Press release: Rapid test facilitates malaria diagnosis 

Cochlea Implantate, Neuronale Modellierung

Bio-inspired Information Processing

PI Werner Hemmert

The cochlear implant is the most successful neuroprostheses, and this project develops novel approaches for the advancement of neuroprostheses, where the main research focus lies on cochlear implants. They replace a full sensory organ and are able to restore hearing and especially speech understanding to a surprisingly high degree. The research success relies on the combination of theoretical concepts (models of the electrical excitation of neurons, sound processing in the auditory pathway), development of novel technology (e.g. binaural listening technology), objective measurements (recording of evoked neuronal potentials) and listening experiments, which is conducted in close collaboration with workgroups from the fields of biology, medicine and industry.

More Information:
Website of the Bio-Inspired Information Processing group
Press release: Understanding hearing
MSB News:3D computer models improve cochlear implant design

Audio Information Processing

PI Bernhard Seeber

The Audio Information Processing group investigates the processing of sound in the human auditory system and uses this knowledge to improve hearing devices and audio systems. Experiments on how we perceive sounds guide the group in building signal processing models of the hearing system. Such models form the basis for audio coding („mp3“) and hearing device processing, and help design product sound quality.

The focus of the group is on improving hearing devices through novel approaches for audio coding in neuronal prostheses (cochlear implants) and hearing aids. They are interested in the brain’s processing of acoustic scenes with multiple sounds and reverberation because these are particularly challenging situations for people with hearing impairment. 

More Information:
Webseite of the Professorship of Audio Information Processing
Press release: Virtual sound spaces

 

Biomedizinisches Computing

Computer-aided Medical Procedures

PI Nassir Navab

This research project focuses on computer-aided medical procedures and augmented reality. The work involves developing technologies to improve the quality of medical interventions and bridges the gap between medicine and computer science.  The research objective is to study and model medical procedures and introduce advanced computer integrated solutions to improve their quality, efficiency, and safety. We aim at improvements in medical technology for diagnosis and therapeutic procedures.

More information:
Website of the Chair for Computer Aided Medical Procedures & Augmented Reality
Press release: Clear view on stem cell development
In the Media: TV feature on medical augmented reality

Medical Image Computing

PI Björn Menze

Our research is in medical image computing, exploring topics at the interface of medical computer vision, image-based modeling, and computational physiology with a strong application focus on oncology. Very broadly, we are interested in developing computational methods that will help in transforming the qualitative visual inspection of medical image data into a functional interpretation of the disease process. In this, we focus (1) on developing principled directions for integrating and abstracting information from complex multi-modal image data by using biophysical-statistical models, and (2) on further developing data-driven machine-learning approaches that provide means for embedding this model-driven analysis in a workflow capable of dealing with large clinical image data sets at the population scale. 

In the long term, this work will provide the computational methods necessary to infer function from structure by modeling clinically relevant functional anatomy, and the technical means for developing new (patho-) physiological models at the same pace as novel imaging methods to generate more and more specific insights into anatomy and function.

More information:
Website of the Image-Based Biomedical Modeling group

Computational Imaging

PD Dr. Tobias Lasser
Forschungsgruppe Computational Imaging and Inverse Problems
Veröffentlichungen der Forschungsgruppe

„Sehen ist Verstehen“ – wir arbeiten an rechnergestützten Methoden für neuartige Bildgebungsverfahren, die uns ermöglichen sollen, mehr zu sehen.
Beispiele für Anwendungen unserer Arbeit sind:

  • die Visualisierung dreidimensionaler Strukturen, wie der Gehirne von Zebrafischen, auf Grundlage eines einzigen, planaren Mikroskopbildes,
  • die Identifikation von Mikrostrukturen – zum Beispiel Nervenfasern – in makroskopischen Objekten, wie dem menschlichen Gehirn.

Mithilfe von Techniken, die von klassischen variationellen Methoden bis zu Deep-Learning-Ansätzen reichen, entwickeln wir neue Modelle und Algorithmen für die rechnergestützte Bildverarbeitung und für inverse Probleme. Dabei arbeiten wir eng mit Partnern aus Medizin, Biologie, Physik und Mathematik zusammen.

Bildunterschrift:
Deutsch: Anisotropische Röntgen Dunkelfeld Tomographie einer menschlichen Hirnprobe. Das Bild zeigt die Orientierung der Mikrostrukturen. (Details in Wieczorek et al., Scientific Reports 8, 2018.)