News

  • Prof. Oliver Lieleg and PhD student Ceren Kimna use balls and pipe cleaners in different colors to visualize how nanoparticles can be bound together by DNA fragments. Such connections may become the basis of drugs that release their active ingredients in sequence. Image: Uli Benz / TUM

    Artificial DNA can control release of active ingredients from drugs

    A drug with three active ingredients that are released in sequence at specific times: Thanks to the work of a team at the Technical University of Munich (TUM), what was once a pharmacologist's dream is now much closer to reality. With a combination of hydrogels and artificial DNA, nanoparticles can be released in sequence under conditions similar to those in the human body.

  • Microelectrode arrays on gelatin: A team surrounding Professor Wolfrum has successfully printed sensors on gummi candy. Image: N. Adly / TUM

    Producing sensors with an inkjet printer

    Microelectrode arrays (MEAs) can be printed on gelatin and other soft materials

    Microelectrodes can be used for direct measurement of electrical signals in the brain or heart. These applications require soft materials, however. With existing methods, attaching electrodes to such materials poses significant challenges. A team at the Technical University of Munich (TUM) has now succeeded in printing electrodes directly onto several soft substrates.